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ERROR ESTIMATES FOR A NONLINEAR 
DEGENERATE PARABOLIC PROBLEM 

P. LESAINT AND J. POUSIN 

ABSTRACT. In this paper we are dealing with a partial differential equation of 
parabolic type, which degenerates on one side of the domain. This equation 
may be viewed either as a model of particle diffusion in plasma physics, or as a 
simplified model of a viscous boundary layer in two dimensions. Known results 
for the existence and uniqueness of the weak solution are first recalled. A finite 
difference implicit scheme is then defined, and error bounds are derived, taking 
into account the low degree of smoothness of the exact solution. An iterative 
algorithm for the computation of the numerical solution at each time step is 
shown to be convergent. 

1. INTRODUCTION 

The problem that we intend to study is the modeling of diffusion of parti- 
cles (see Drake et al. [9, equation Al]) in plasma physics, where the unknown 
function u denotes the density of the particles. 

This problem may also be viewed as a simplification of the equations for 
a viscous boundary layer in two dimensions, occurring in fluid mechanics in 
the case of an incompressible fluid flow around a solid body. If we neglect the 
advection terms in the direction orthogonal to the body, the unknown function 
u represents the velocity of the fluid along the t direction, parallel to the body, 
and the other variable x represents the distance to the body (see also Oleinik 
[18]). Let QT = (0, 1) x (0, T); we define the problem (P) as follows: 

to find u(x, t) satisfying: 
utu-uXX = 0 in QT, 

u(x, 0) = uo(X) in (0, 1), 
u(0, t) = 0, u(l , t) = ul(t) in (0, T). 

Our main results concerning problem (P) are the following: a finite difference 
implicit scheme is defined, existence and uniqueness of the numerical solution 
is proved, and error bounds are derived. An iterative algorithm allowing us to 
compute the numerical solution at each time step is defined, and the convergence 
is proved. 
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An outline of the paper is as follows. The later part of this section is devoted 
to the assumptions concerning problem (P). A weak formulation of this problem 
is given and known results for the existence and uniqueness of the weak solution 
are recalled. In ?2, we define a finite difference scheme, implicit with respect 
to the time variable t. We show the existence, uniqueness, and stability of the 
numerical solution. In ?3, we adapt a technique first developed for the Stefan 
problem by Nochetto [16], and we derive an estimate of the error between the 
exact solution u and the approximate solution U, namely 

IIU - UIIL2(QT) ? C + hl/2) 

where T and h denote the parameters of the discretization respectively in 
time and in space. The term 1 arising in the estimate is the price to pay h 
for the degeneration of the problem at x = 0. In ?4, we define an iterative 
algorithm which allows us to solve the nonlinear system of equations satisfied 
by the approximate solution at each time step. We show that this algorithm 
converges when the number of iterations goes to infinity. In the last section, we 
give some possible generalizations of the previous results in the cases where the 
term uut is replaced by uP- ut, p > 2, and (or) for a spatial dimension equal 
to two or three. 

We now recall results of existence and uniqueness for the weak solution of 
problem (P); a proof of these results can be found, for example, in Sabinina 
[20] or in [19]. Other results of existence and uniqueness of an even weaker 
solution have been derived; for these we refer to Arison and Benilan [1], Arison 
and Peletier [2, pp. 381-411], Benilan [3], and Herrero and Pierre [12]. 

We define the following spaces: 

V21 0(QT)= Co(0, T; L2(0, 1)) n L2(0, T; H1(O, 1)), 

W2 (QT) = {E H1(QT); q(0, t) = (1, t) = 05 , < t < T; 
p(x, T) =0 < x <1} 

and we denote by IIOIIP; QT the usual norm in LP(QT), 1 < P<X. 
We assume that the following hypotheses are satisfied: 

HP 1. uo(x) E Co([O, 1]), uI E CO([O, T]) and have bounded derivative; 
HP2. ul (0) = uO(1), uO(0) = 0; 
HP3. u0 and ul are positive functions and 3fi > 0 such that uO(x) > fix 

for 0< x < 1 and ul(t) >? / for 0< t < T. 
A weak solution of problem (P) is defined by: 

Definition 1.1. The function u E V21'0(QT) is a weak solution of problem (P) 
if 

J-u 2(X)q(X, 5 ) dx 
(1.1) JO 

+ |2u,(x , t)(p.(x , t) - u2(X, t)pt(x , t) dx dt = 0 
QT 

Vq E W1 "'(QT) n CO(OT;L??(0, 1)); u(0, t) = 0, u(I, t) = uI(t), 0 < t < T. 

We have the following result: 
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Theorem 1.1. Problem (P) has a unique weak solution U E V01 (QT) . Moreover, 
(i) uECo(QT)fnLo(0, T; W1,0(0, 1)); 

(ii) VZ > 0, fI foT(ut)2 dx dt < C/z, where the constant C is independent 
of z; 

(iii) 3fi > 0 such that u(x, t) > fix in QT. 

Remark 1.1. For the sake of simplicity, we assume hereafter that u I(t) = b is 
independent of t. In the case where u I(t) is not a constant, there would arise 
boundary terms. 

Proof of Theorem 1.1. The proof of such a theorem is now classical; see, for 
example, [1, 2] or [20]. We only sketch the idea of the proof, especially to 
obtain the estimate (ii). 

We solve, for e > 0, the problem: 

(1.2) gueu -utX =0 in QT, 

(1.3) ue(x, 0) =uo(X) + c in (0, 1), 

(1.4) ug(0, t) = 6, u8(l, t) = ul (t) + e6 in (0, T). 

It is known that such a problem, for any e > 0, admits a classical positive 
solution uc satisfying ue > fix (cf. [13, 11, 15]). To get the estimate (iii) for 
u just use the maximum principle on the linear equation: 

ue et - e~x = 0, with boundary and initial conditions, 

where e = ue - fix. 

To get the estimate (ii) for u%, we first multiply equation (1.2) by ut and 
integrate in space and time. We obtain 

1T j u,(U,)2 dx dt + j u,(U,)2 dx dt 
1 fl 

+ I ((i (x, T))2 - ((x, 0))2) dx= 0. 

Since ue is positive and ue > fix, we easily get 
PT I1 

zj yj(u,)2dxdt < C. 

Taking the limit when e -* 0, we get Theorem 1.1. U 

Remark 1.2. We have (cf. [4]): 

for every to, t1, 0 < to < tI < o, 

UtE Lp((O,1) X (to, ti)) for anyI <p < 
3 

2. THE DISCRETE PROBLEM, EXISTENCE AND UNIQUENESS OF A SOLUTION, 

AND A PRIORI ESTIMATES 

For given integers N > 0 and m > 0, we let 

T =t=nz 0 < n < N; 

h +l xi=ih, 0<i<m+l. 
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For c a given constant, we define the spaces Vh, Vh(c), and WhT(c) by: 

Vh = {(P(s) E C?[O, 1 ]; p I [x,, x,+l] is a polynomial of degree l}, 
Vh(C) = {p E Vh; q(O) = O. t(1) = c}, 

WhT(C) = {q(, *) E L2(0, T; C?([O, 1])); q(' ntni = p E Vh(c), 
1 < n < N where (pn is constant with respect to t}. 

To the scalar product (, *) and norm 11II1in L2(0, 1) we associate respectively 
the discrete semiscalar product ( ,)h and seminorm 11 * Ilh defined by 

(U.5 V)h = h u(xi)v(xi) + 2-(u(xo)v(xo) + U(Xm+i)v(Xm+i)), 
i=l 

ll~h = (V,5 V)h VU , V E C?([O,5 1]). 

The function y from IR to D+ is defined by y'(s) = I2. 
We define the approximate problem (PT) as follows: 

to find {Un}IN0 E (Vh(b))N+l, Un > 0, such that 

(y(Un+1) _y-(Un), (Ph)h + za(U~ +, (h) = 0 
VqhEVh(O), O<n<N-1, 

(2.1) U? = rhuo, 

where a(q, tV) j Vix dx, 

and where the interpolation operator rh in Vh is defined by 

(2.2) rh p E Vh, rq(P(xi) = (P(Xi) , 0 < i < m + 1I VO E C?([O, 1]). 

Theorem 2.1. Problem (PI) has a unique solution, and we have Uin > 0 for 
1< i < m + 1 and 1 < n < N. 
Proof. Assume that Un is known and that Uin > 0 for 1 < i < m + 1; we want 
to find Un+I by using equation (2.1). We have to solve the following problem: 

to find W E Vh (b) such that 

(2.3) (y(w), tPh)h + za(w, (h) = (y(U) , (Ph)h V(ph E Vh(O), 
where Uin > O, for 1 < i < m + 1, and Uon = O. 

With the notation wi = w(xi), equation (2.3) is equivalent to the system 

(2.4) 2w2+ T(-wi+l + 2wi - wi-) = h(Uin)2 for 1 < i < m 

Wm+i = b, wO = . 

Existence and uniqueness of a positive solution for the system (2.4) is obtained 
by considering a minimization problem. 

Let the functional z -* J(z) from Rm into IR be defined by 

(2.5) J(Z) = 1ztAz + hjZ 
2 6 

j=1 
= 
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where Fj - (Ufl)2 for 11 ? rn-i, Fm = (Un)2+ , and zj - 

max(zj, 0). The matrix A is tridiagonal, with 21 on the diagonal and hI on hh 
the upper and on the lower diagonal. The functional J(.) is strictly convex, 
continuous (for the Euclidean norm 11 * 112 on DRm), and J(z) tends to infinity 
with the Euclidean norm of the vector z. Then, the minimization problem: 

to find tb E em such that 

J(tb)= inf J(z) 

has a unique solution. The differential of the functional J(.) is given by 

Jj (z) = (Az) j -Fj + h (Zt)2; 

the solution wi satisfies 

(2.6) (Ah)j -Fj + 2 (tb,)2 = 0 for 1 < j <m. 

Let the matrix B be defined by 

Bii = Aii + 2 

Bij = Aij for is& jand I < i j < m. 

Since (tbt)2 = tiwtit , we get 

(2.7) (Bt)j = Fj for I < < m. 

The matrix B is monotone, and the Fj are strictly positive. We deduce that 
the tbj are strictly positive for 1 < j < m, so that relations (2.6) become 

(2.8) (Ah)j -Fj + 2 ( _j)2 = _ for < j <m. 

From this we conclude that the problem (2.4) has at least one solution tw sat- 
isfying tbj > 0 for 1 < j < m. 

Starting from U0 (with Uf > 0 for 1 < j < m), we get the existence of 
Un by induction. To show the uniqueness of positive solutions, we assume that 
there exist two positive solutions w1 , w2 to the problem (2.3). We have 

(2.9) (y(W1) - y(W2), (Ph)h + za(w1 - w2, (h) = 0 V(ph E Vh(O) 

We may write 

(y(W1) - y(w2) w1 - W2)h = ((w1 -W2)(W1 + W2), W -W2 )h > 0. 

Replacing (Ph by w I _ w2 in relation (2.9), we get a(w 1 - w2, w 1 - w2) = 0, 
which yields wI = w2 . Theorem 2.1 is thus proved. 5 

Remark 2.1. If we delete the condition Un > 0 in the definition of problem 
(Pt), the existence of a solution becomes an open problem. We have only an 
answer in the case m = 1 (h= 2). In that case, problem (2.4) becomes 

w 2+ 8z(2w, -b) = (Un)2 
which has both positive and negative solutions. 

Remark 2.2. Another proof would have been to define the function y by y(s) = 

Isjsj. In that case the problem becomes monotone, thus ensuring uniqueness 
and positivity. 
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Lemma 2.1. The solution { Un1}f0 ofproblem (PT) satisfies 

(2.10) IUnII oo;(o,l) < max(IIU I I ;(o,l), b) for 1 < n < N. 
no 

(2.1 1 ) zZE 11 Un 112; (o l) < CIU?1;(oi) for 1 < nO ? N, 
n=1 

where the constant C is independent of h and z. 
Proof. In relation (2.7), we replace wt by Un+1: 

(2.12) 2 U l (Uin+ )+ + >(Ufn++ + 2Uin+l -U/n11) =-(Uin/)2 for 1 < i <m 

U+ = b, u0 =o 

Let j be an index such that 

Un+1= sup Un+I 

l<i<m+l 

If j = m + 1 , then sUpl<i<m+l Un+ I = b, and inequality (2.10) is thus proved. 
If 1 < j < m, we have 

-u7n4+ + 2Ujn+l - un+l > o 

and 
Ujn+l ( Un+l )+ < ( Un)2. 

Since the Un+-I are strictly positive for 1 < i < m, we get 

Un+1 < Un < sup Un 
l<i<m 

from which it follows that 

sup Uin+ < max ( sup U/i, b) 
1 <i<m+l 1 <i<m 

inequality (2. 10) is thus proved. In relation (2.1), we replace (Ph by Un+ I Un E 
Vh(0) . Summing over all indices n, 0 < n < nO - 1, we get 

no-1 Z {(y(Un+1) - )y(Un), Un+1 - Un ) + za(Un+, un+l - Un)} = O. 

n=O 

The first term of the left-hand side is positive, since the Un are positive for all 
j and n, and 

(y(al) - y(a2))(aj - a2) = 1((a, - a2)2(aI + a2)) > 0 for aI and a2 positive. 

We then get 
no-1 

Z{HU;+1H;(o) 1)-2U0;(O 1) + HU;(1 - U O.(O 1)} < 0 
n=O 

and 

(2.13) |xnl2; (0, 1)- < gl 2; (0 1) 

From the last inequality we deduce inequality (2.11). Lemma 2.1 is thus 
proved. El 
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3. ERROR BOUNDS 

A variational technique, first developed by Nochetto [ 16] for the Stefan prob- 
lem, and based on integration by parts, is used in this section. We also mention 
two relevant works of Nochetto and Verdi [17] and Elliott [10], concerning the 
effect of numerical integration in multidimensional degenerate parabolic prob- 
lems. 

We begin this section with recalling a numerical integration result. This result 
will be used in the proof of the error estimate, because we use the lumped mass 
version of the L2 scalar product for the scheme (2.1). We define the quantity 
Eh by 

Eh(v, w) = (v, w)h- vwdx Vv, w E C([O, 1]). 

We have: 

Lemma 3.1. The following estimate is valid for any p > 2: 

IEh(vP, w)I < Ch {|Ivp- IIL'O(O,1)IIVXIIL2(o,1)IIWXIIL2(O 1) 

+ IIVp-2IILOOO, l)IIVXIIL2(o,1)IIWIIL-(O, 1)} VV, W E Vh(b). 
Proof. The classical tools of the proof are developed, for example, in Ciarlet 
[7]. For a detailed proof, we refer to Lesaint and Pousin [15]. El 

We introduce the following interpolation operators: 

F^h: V(b) -- Vh(b) 
V H- hv defined by a(v - hv, () =0 oE Vh (O), 

MH: L2(0, T; V(b)) -* Whr(b) 
1 tn+ I 

w-+ fl'w defined by H WI (t ] =t H^h(., t) dt, 
tn 

where V(b) is the following space: 

V(b)={v EH1(O, 1); v(O)=0, v(l)=b}. 
We let Y = 1H7u, where u is the exact solution of problem (P). For any w E 
CO(QT), we define qTW E L2(0, T; CO([O, 1])) by 

qWI(tn ,tn+I = w(., tn+l) =wn+l(.) for0< n <N-1, 

(qTwT)(., 0) = w(. , 0) = w0. 
Finally, we define U E WhT(b) by 

Ul (tnt,+i] =UnX 

where Un+1 E Vh(b) is defined by the scheme (2.1). 
Before stating the theorem for the error estimate, we show how a stability 

inequality in L2 norm can be established for the continuous version of the 
problem; this will give us a better understanding of the rather long proof of this 
stability inequality for the discrete problem. 

In the next few lines, we assume that i is a smooth function and that b = 0. 
A continuous version of scheme (2.1) may be written as follows: 

(3.1) (y (i)t, q) + a(i, (0) = 0 V(p smooth, 9(0, t) = (0(1, t) = 0. 
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We now define the function (p by 
0 for t < s < T. 

qP(x, s) = 
{ v(x, s) = (x, a)da forO <s <t. 

Integrating equation (3.1) with respect to time, we get 

(3.2) j( i(u), iu du) ds + ja (u, j udu) ds = O. 

By integration by parts, the first term of the left-hand side of relation (3.2) may 
be written as 

y j idu) + (y(a) ui)ds 

= - Y((i(. 0)) , j du)+ + L 2-dxds. 

Since av= i-, the second term of the left-hand side of relation (3.2) may be 
written as 

( Ov ftjIO2V OV dx If __ 

-a -, v) ds aa dxds (j ) (x O)dx 
since v(x, t) = 0. Multiplying relation (3.2) by 2, we deduce 

jj | dxds+a ( (., s)ds, u( ,s)ds) 
(3.3) ?? 

= jL (X? jt (x , s))ds dx. 

Poincare's inequality reads here as follows: 

11112;(o, l) < a(q, %) Vq such that (O, t) = O. 
Therefore, 

jL (jUit(x ,s) ds) dx < a (j(x ,s) ds , (x ,s) ds). 

The right-hand side of relation (3.3) is controlled using the Schwarz inequality, 
so we get 

(3.4) L 2dx ds+4 a ( (. s) ds (. s) ds) < 2 L (x) dx. 

Using the property ui(x, t) > fix for 0 < t < T and for 0 < x < 1, we deduce 
that for all z such that 0 < z < 1 we have 

ja3dx > j a3dx >, izj a2dx= fzj e2dx- fzj U2dx. 

Combining this inequality with inequality (3.4), we get the following stability 
estimate in L2 norm: 

3 Z5 | | 2(X, s) ds dx + -a (J (, s) ds, Ja(, s) ds) 
(3.5) < x d + z 

<, / u40(x) dx + fz t tu ,s) dx ds. 
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Theorem 3.1. Let u be the solution of problem (P), and let U e Wh (b) be the 
solution of problem (PT). Then 

(3.6) jjU-UIIL2(QT) < C + hl/2) 

where the constant C is independent of z and h. 

Proof. First, we give a stability inequality in L2 norm for the problem (PT), 
analogous to inequality (3.5). This inequality allows us to control the difference 
between the approximate solution and some WhJ(b) interpolate of the exact 
solution. 

For 0 < n < N - 1, we may write 
rtn+l {tn+ I 

(3.7) f (Y(u) t,) )dt+ a(u, (p) dt = 0 

V\O E Vh(O), y(U)(X, 0) = Y(Uo)(X). 

Using the notations introduced above, and summing over the indices from n = 
0 to n = no- l, weget 

no-1 no-1 

(3.8) Z: (y(un+,) - y(un ) , qn+l) +T 1 a( yn+1, (fn+l) = o, 
n=O n=O 

V9 e Wh(O), 1 < no < N, y(u?) = y(uo). 

Summing the relations (2.1) over the indices from n = 0 to nO - 1, we get 
no- 1 no-1 

(3.9) E (y(Un+,) - y(Un), (pn+1)h + T 13 a(Un+l, (Pf+l) = 0 
n=O n=O 

Vq E WhV (O), 1 < nO < N, y(U?) = y(rhuo). 
In relations (3.8) and (3.9), we integrate by parts, in a discrete way with respect 
to time. We get 

no nO 

- Z(y(u) qn+l ) -( ) + TEa(Yn, qfn) - (y(u?) (p1) + (y(uno) (pnO+l) -O0 
n=1 n=1 
no nO 

- Z(y(U~n) (,n+l - n )h + Tz a(Un , qn) - (y(Uo), (P1)h 

n=1 n=1 

+ (y(Uno) ',f ln)h = 0. 

Subtracting these equalities yields 
no 

j3[-(y(Un) - y(un), I - n+1 -n) + Ta(Un - yn Y n)] 
n=1 

= -(Y(U0) - y(u0), (1) 

(3.10) no 
+ 3Eh (y (Un ), 9,n+ 1 - fnl) - Eh (Y (U?) , 1) 

n=1 

(y(Uno)) fnlo+1 )h + (y(Unfo) , qno+l) 

V E WhJ(O), 1 < no < N. 
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Let (pn be the following discrete integral: 
no 

n Tl(Uk _ yk) if I < n < no, 

t 0 if nO + 1 < n < N. 

It is easy to see that vOn E Vh(O), vqn+l - ?On = -,(Un - yn). Replacing ~On by 
its value in equality (3.10), we have 

nO n nO\ 

T Z,(y(Un)-2y(un), Un - yn) + 2 a un - yn (u u k _ Yk)) 

n=l n=1 k=n 
no no 

(3.11) =-zZEh(y(Un), Un yn) _ rzE h(y(Uo) Uk _ Yk) 
n=l k=l 

no 

-T Z(y(U?) - y(U?) Uk _ yk) 

k=l 

This equality may be written, with obvious notations, 

(3.12) D1 +D2 = D3 +D4 +D5. 

First, we estimate the term DI . To do that, we rewrite DI as the sum of two 
terms: 

no 

D1 = D1 + D1 = T (y(Un)- y(un), Un un) 
n=1 

no 

+ T E(y(Un) - y(un), Un - yn) 
n=l 

We have 

D= E (Un + un)(Un - Un)2 dx, 
n=lI 

with Un > 0. The inequality u(x, t) > fix for 0 < t < T. 0 < x < 1 (see 
Theorem 1.1) implies Un(X) > 1h for h < x 1 < n < N. Hence, 

J(Un+Un)(Un-Un)2dx > j (Un+Un)(Un-Un)2 dx > ,Bh j(Un- un)2 dx, 

which leads to the inequality 

Z jE (Un 
- 

un)2 dx < ?, + 2 j (Un - un)2 dx 

nO 

< D1 + flh2TZ(11UnIIj;(2 1) + 1IUnI (2O) 
n=l 

Using Theorem 1.1 and Lemma 2.1, we get 

(3.13) - U-qTU1122 < DI + 9lh, 

where WI is a constant independent of h. 
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To get an estimate of D1, we let 

f (Y(Un)-y(un))/(Un - un) if Un un, 
1 0 if Un = un. 

This expression is uniformly bounded in L??(QT). We write 

(y( Un) -y(un), un - 
yn) 

= (((y(Un) -y(un))[Un ])1/2 4112(un - yn)) 

Using Schwarz's inequality, we get 

IDI < [TD (Un) -y(u )( -u n- 
)] 

- no 1/2 

Ln=l 

Letting A = maxl<n<N(IlanlloO;QT) 'we get 

(3.14) I-l < 6DI + 
A 

llqru - 11l2;T 

for any e > O with To = nOT . Since DI > DI - ID, 1, we have 

DI > DI (I -,) A 
ll'r - y112 

Choosing e = 2 and using inequality (3.13), we finally get 

(3.15) .114 U qrUI1 2 llqru y112, QT DI + 2 
Consider the term 

nO nO 

D2 = T2Ea Un_ yn, (Uk _ yk)) 
n=l k=n 

and let bn = (Un - Yn),; we have 
nO I nO 

D2 = T2 1 1 bn bk dx. 
n=lI k=n 

We easily check that 
no nO nO 

E b( k) > _ b2 
n=l k=n k=l 

and we deduce 
no ~~~~2 

(3.16) D2 > - T Y 
k=1 2;(0, 1) 

Consider the term 
no 

D3 -TEEh(y(Un), Un - yn). 
n=1 
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Using Lemma 3.1, with p = 2, we have 

lEh(y(Un), Un - 
yn)l 

(3.17) < Ch2{IIUnIOo;(o, l)IIUxnI2;(o, l)I(Un - Yn)xII2;(0,l) 

+ HUHn12;( l)H1U _Y y 1.;(, 1)} 

Lemma 2.1 implies 1Un 1O;(o0) 1, < c . Since 

U E Co (QT) n L?? (0, T; WI, 00 (0, 1 )), 

we derive from the definition of Y that 

IIyn c)0;(Ool) < C. 

The right-hand side of inequality (3.17) is thus bounded by 

Ch2(IUxn112;(0, l)II(U-Yn)x112;(0, 1) + IIUxII2;(0, 1)) 

? 3Ch2{IIUInI12;(O, 1) + IIxIIn2;(O, 1)} 

where C denotes various constants independent of h . Using once more Lemma 
2.1 (inequality (2.11)) and the definition of yn , we get 

(3.18) ID31 < Fh2, 

where F2 depends on IIUOIIoo;(o;l) ' IIU5IIOo;(oo l); IIUIIL2(OT;HI(O,1)) and b. 
We proceed in the same way to estimate the term 

no 

D4 -T Eh (y (U), Uk _ yk) 

k=- 

and we get 

(3.19) ID41< 3h2 

where F3 is a constant of the same kind as F2. 
For the last term, 

no 

Ds =-T - (y(U?) - y(U?) Uk - yk) 

k=1 

we use Schwarz's inequality to get 

jD51 < ?||U? + U?1loo;(O, I)IIU? - U2;(O, ) || uk Yk 

k=l 2;(0,1) 

Since u? E W1 'O (O, 1), we easily check that 

H1U u - U0112;(0,l) < Ch; 1U0 + -uOH1O;(0,l) < C 

where C denotes different constants independent of h. Since (Uk - yk)(0) - 

0, for all h, we may use Poincare's inequality, and we get 
no 

(3.20) ID51 < j4h Tl Uk_-Yk 
k=l 2;(0. 1) 
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Combining relations (3.12) and (3.15)-(3.20), we get 

no 
34 IIU-qT~l2; - lt-l2hS E Uk _ yk 

<(2 + 3)h2 +4h TZu _Y 
k=l 2;(0O 1) 

From this inequality we deduce a stability estimate in L2 norm: 
no 2 

flhIIU - qTu 11;Q2 + Uk _yk 
(3.21) 

2 
1 2;(O,1) 

< (2Fi + 4F2 + 4F3 + 4F4)h2 + 2AIlqTu - y112 

It remains to estimate the term qzu - Y. We write 
I {tn+1 

q u- YJ (ttn+li = J (u( tn+l) -HhU(, t))dt 

1 tn+1 

= - u(., t)) dt 

+ - (u(, t) - HhU( , t)) dt 

-En + En - +1 E2 

We have 

1) 1/ (JI u(x, t+- u(x, tn)dt) dx 

= n 
112 U(X tn+l)U(X ([tn)tdt 
1 2 (0 1)T2 Jhdxt 

+ 12 fh /ftntnl i 2 

I _ I U(X , tn+ I) - U(X , tn)dt) dx. 

For the first term of the right-hand side, we may write 

l(Jtn U(X , tn+ 1) - U(X , tn) dt) dx 

1l/ tn+ I tn+ 1 2 

(3.22) Jh t~tn Jt Ut(X, s)dsdt) dx 

3 
1 rtn+i I 

( 

<T3jJ ut(xt)dt dx. 
h n 

For the second term of the right-hand side, we use property (i) of Theorem 1.1 
to get 

O < u(x, t) < Ch for any 0 < x < h, O < t < T. 

and we obtain the estimate 

(3.23) 1h (jt? U(X , tn+) - U(X , tn) dt) dx < C-ih3. 
O n 
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From inequalities (3.22) and (3.23) we get, by using property (ii) of Theorem 
1.1 with z = h , 

T IIE I 112;(o, 1) < C ( h +h) 

On the other hand, it is well known that 

lU(G, t) - rlhU(, t)2;(0, 1) ? Ch IIUII(O T;HI(O, 1)); 

thus we deduce 

(3.24) itq~ a- y||2; < W5(h+h2) 

Combining inequality (3.21) and (3.24), we get 

II U - qU"iQ ?2 + h) UI - 1 qt2; QTO 
< W6 (h2 +A 

for any To = nor, no < N. 
In the same way as before, we obtain 

llU - q U112 QT ? C (ih + h3). 

Finally, we get, by using the triangular inequality, 

11 U - U112; QT < W7 (h +hl 

so that Theorem 3.1 is proved. El 

4. AN ALGORITHM TO CALCULATE THE SOLUTION OF PROBLEM (Pt) 

The definition of the approximate problem (equation (2.1)) implies that for 
each time step, we have to solve a problem of the form: 

foragivenfunction feCO([O, 1]), f>O in (0, 1], 
find w E Vh(b), w > 0 in (0, 1], such that 

(4.1) a(w, v) + (]w2, v)h = (, v)h Vv E Vh(O). 

Consider the following algorithm: 

let w0 E Vh(b) be given; define the sequence {Wk}, Wk E 

Vh(b), by 

(4.2) a(Wk+l, v) + I(Wk+1Wk, V)h = (f, V)h Vv E Vh(O). 

The proof of Theorem 2.1 shows that, for a given wk E Vh(b) with wk > 0 
for x > 0, the problem (4.2) has a unique solution wk+l E Vh(b) satisfying 
Wk+l > 0 for x > 0. 

Before stating the convergence result for the algorithm (4.2), we introduce 
some notations, and we give some intermediate results, which will be proved at 
the end of this section. 
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Let Hb be the space Vh(b) equipped with the maximum norm. Define the 
mapping 

Sf: Hb -Hb 

where 0 E Vh(b) is a solution of 

(4.3) a(6, v) + I((0, V)h (, V)h VV E Vh(O). 

Then the following inclusion holds true. 

Lemma 4.1. The domain sof the operator atisfies S(Sf) D {v E 
Hb; inf( > ?O} . 

It is easy to check that Wk+1 can be expressed as 

(4.4) Wk+1 = Sf (Wk), 

and that w, the solution of problem (4.1), satisfies 

(4.5) "f =S(W) . 

Moreover, we have wj = w(xj) > 0 for 1 < j< m + 1. 
Now, we are interested in the existence of the derivative of Sb. Let w be 

defined by 
w = inf wj; 

>1? 
then we have the following result. 

Lemma 4.2. Let F be the neighborhood of w in Hb defined by 

IF= {v E Hb; 11w - ('qIoo;(O,1) < w/2}. 

Then Sfb () E C' (F), and the differential DSb of Sb is given by 

(4.6) D Qb Vv = _S((O) .VSb~ 

where the linear operator y 4/ = S((o) * y: Hb -' h (0) is defined by 

(4.7) a(ig, v) + = I(y, V)h VV E Vh(O). 

The next lemma provides an estimate of the spectral radius of the mapping 
D Sf(w). 

Lemma 4.3. The spectral radius of the mapping v -* DSb(w) v from Ho into 
Ho satisfies 

(4.8) p(D St(w)) < 481 +IwIo;(, l) 

where 

A= inf a(q, q) > 0. 
qGVh(o), q5 (0 , q)h 

We are now in a position to show that the algorithm (4.2) is convergent in 
the following sense. 
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Theorem 4.1. Let w be the solution of problem (4.1). There exists a neighbor- 
hood of w in L??(O, 1), denoted by F1, such that if wo is chosen in F1, the 
sequence {wk} converges towards w. 
Proof. We want to show that for a certain norm on the (finite-dimensional) 
space Vh (b), the mapping Sf is locally a contraction. To do that, we show that 
the derivative of Sb is bounded by a constant < 1 in a neighborhood of w . f 

It is well known (see, for example, Ciarlet [6, p. 19]) that for any e, there 
exists a norm on Vh (0) such that for the induced norm for the operators, 
we have 

IIIDSb(w)III ? p(DS (w)) + in 
Choosing e small enough, by Lemma 4.3 we get the existence of 

k E R such that IIIDSf(w)II < k < 1. 

Applying Lemma 4.2, we get the existence of a neighborhood F2(W) C F and 
a real number k' such that 

I IIDS )I < k' < 1 V(O E F2(w) 

Let fl be the maximum of radius R such that BR(w) c 12(w), where BR(w) 
is the ball of center w and radius R, for the norm 1I1 1 I 1 1I1 . Set FI (w) = Bf(w) . 
Then, it is not difficult to check that a classical fixed point theorem applies (see, 
for example, Dieudonn6 [8, p. 261]), so Theorem 4.1 is proved. El 

Remark 4.1. For the approximate problem (2.1) we have to consider the prob- 
lem (4.1) where the term (I W2, V)h is replaced by (I 2W2, V)h. In fact, The- 
orem 4.1 still holds if the term (Iw2, V)h is replaced by (aW2, V)h for any 
a > 0 . We just have to modify the definition of y . Nevertheless, let us mention 
that for the approximate problem (2.1), when h is fixed, ,u depends linearly on 
T. Consequently, the speed of convergence decreases with T, since the spectral 
radius of the mapping DSf (w) goes to one when T tends to zero. 

To conclude this section, we give the proofs of Lemmas 4.2 and 4.3. 

Proof of Lemma 4.2. For (0 E F, let 6 and 0 be the functions of Vh(b) 
respectively defined by 

(4.9) a(6, y/) + 2(((O + V*0 Y)h = (f, )h, 

(4.10) a(6, ig) + 2(oO, X')h = (, v')h VY/ E Vh(O), 

where v E Ho. The relations (4.9) and (4.10) may also be written as 

0 = S((), 6 = Sf(o +v). 

Since (0 E F, there exists a unique 0, with 0 > 0 for x > 0. We have the 
same properties for 6, as soon as Iv IIO;(0, 1) is small enough, since for such a 
v,wehave (o+v>0. 

Combining (4.9) and (4.10), we get 

(4.11) a(6-0, Y/)+ I((O-0), )h =-(VO, )h, 

which implies 

6 - 0 = S((O) * (-vO) = -S((O) * v6 - S((O) * v(O - 6). 
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The solution 0-6 of problem (4.1 1) satisfies 

110 - 6IIH1(, 1) ? CIIV0IIh < IIVIIoo;(O, 1)11011h. 
Moreover, using a discrete version of Poincar6's inequality, 

11011h <- II0IIH1(0, 1) <- Cllf Ilh <- Ilf ICO([O, 1])1 

we get 

(4.12) 1 - IIHI(O, 1) < CIIfI1 CO([O, i]) IvI1oo;(O , 1) 

Since H'(O, 1) is included in CO([O, 1]), inequality (4.12) yields 

(4.13) 11 - 6II0o;(0, 1) < CIIvIIoo;(O, l)IIfIlco([O, I]) 

Relation (4.13) implies that 

(4.14) DSfY(p) . v = -S((O) * v6 = -S(p) . vS((O). 

The definition of the operators Sf (.) and S(.) and the expression of DSf (.) 
imply that Sb (.) E C' (F) . Lemma 4.2 is thus proved. El 

Proof of Lemma 4.3. Let A be an eigenvalue of the operator DSb(w) and p 
an associated eigenfunction, 

(4.15) DSf(W)*P=)AP 

Using relations (4.6) and (4.15), we have 

-S(w) * (pw) = Ap. 

Let q = -Ap. From equation (4.7) we derive q E Vh(O) which satisfies 

a(q, y/) + '(wq, Y/)h = '(pw, YJ)h VV E Vh(O); 
if A 0 0, we may also write 

a(q, y/) + '(w(1 + 1/A)q, Y')h = 0 VYi E Vh(O). 

Replacing y/ by q (complex conjugate of q), we easily check that (1 + A)/I 
is real and (1 +?)/I) <0, that is, -1 <A < 0. 

To be more precise, let 

d1i= inf a(z, z) 
z50;zEVh(O) (WZ, Z)h' 

We may write 

- ? >2dc or IAI 1?2d 

Since di > IuJIwJJ-1;(ol) we deduce inequality (4.8). Lemma 4.3 is thus 
proved. 51 

5. MISCELLANEOUS REMARKS 

Remark 5.1. The approximate problem has been studied in the case where 
u(l, t) = b, where b is a given real number. The results obtained are still 
valid if b is replaced by a function t --* b(t) . 
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Remark 5.2. For b = 0, and more generally, for a dimension in space greater 
than one, with homogeneous Dirichlet boundary conditions, there exists an 
extinction time T*, after which the solution is equal to zero. For more details, 
we refer to Le Roux [14] and to Berryman and Holland [5]. 

Remark 5.3. Hypothesis HP3 is essential for obtaining the error bounds. 
To generalize the problem studied in the preceding sections, we may consider 

the case where y(s) = sP/p, 3 > p > 2, and (or) the case where the spatial 
domain is, for example, a rectangle or a parallelepiped, located in the region 
x1 > 0. For such domains, we have to replace the boundary conditions by 

uQX, t) = 
0 for x1 = 0, 

l= uI (x, t) > 0 for x E aQ with x1 > 0, 

where x = (x1, ...), and we have to replace the hypothesis HP3 by uo(x) > 

fix, . We also assume some regularity and compatibility conditions for bound- 
ary and initial conditions corresponding to the hypotheses HP1 and HP2. In 
both cases, existence and uniqueness of a weak solution are still valid. 

Remark 5.4. For a spatial dimension equal to two, a sufficient condition to 
get the existence and uniqueness of a positive approximate solution is that the 
discretization of the Laplacian satisfies the usual positiveness properties (for 
example, with triangular finite elements with three nodes, with the angles of 
the triangles being less than or equal to 2) . The proof of the error bounds is 
then extended in a straightforward way: we split the domain Q in two parts 
Qh={XEQ; 0<x1 <h} and Qc ={XEQ;X Qh}. 

Remark 5.5. For the algorithm defined in ?4, with p = 2 and a spatial dimen- 
sion at least 2, the results stated in Lemmas 4.1, 4.2, and 4.3 are still valid. 
We have only to replace in the proof of Lemma 4.2 the inclusion of HI (0, 1) 
in CO([O, 1]) by an inverse inequality, 

110 - IIoo;Q < C(h)II6 -01HI(Q) 

and the results still hold, since, when using the algorithm, h is a fixed parameter. 

Remark 5.6. For the algorithm defined in ?4 with p > 2, we have to calculate 
the gradient of the operator Sb(.) defined by 

, 0 =f~f)E Vh(b) , 

where 0 satisfies 

a(6, yi) + !((1PP , YJ)h = (f, V)h VV E Vh(O). 

We get 
DSb(l) . V = -(p- 1)S(Ip) *pp2Vb(1), 

where y -* P = S((0) *y is defined by 

a(T, z) + !(('P1W, Z)h = p(y, Z)h VZ E Vh(O). 
p p 
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Then, for the spectral radius we get the estimate 

p (D,,,b(W)) < (p 
I 

1) WP~ lo, II;(0, 1) 

where w is the fixed point of Sb and ,t is defined as in ?4. The algorithm 
converges as soon as 

ILIIwP-II(Ol) > 1 _ 2 

and, in view of the stability properties of the sequence {Un}, this sufficient 
condition becomes 

y (max(II U0 I I ; (o, 1), b))' -P 1 2 . 

For more details, we refer to [ 1 5]. 
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